CHEG 2111: Introduction to Chemical Engineering Thermodynamics Spring 2016

Instructor: Ioulia (Julia) Valla, email: <u>ioulia.valla@uconn.edu</u>

Time & Location of classes: Lecture Sections: MWF - 12:20 – 1:10 am - CHM120 Discussion Section: Thursday - 3:35 – 4:25pm - AUST105

Textbook: Introduction to Chemical Engineering Thermodynamics, 7th edition, by: J. M. Smith, H. C. Van Ness and M. M. Abbott (McGraw-Hills Inc.)

Course Notifications: Most class correspondence will occur via HUSKYCT (<u>http://huskyct.uconn.edu</u>)

Time and Location of Prof Valla's Office Hours: Thursdays - 11:00-12:00 pm - UTEB 284

Undergraduate Teaching Assistants: Paige Orlofsky (<u>paige.orlofsky@uconn.edu</u>); Jonathan Klein (<u>jonathan.klein@uconn.edu</u>); Colin Gerrity (<u>colin.gerrity@uconn.edu</u>); Jacob Struble (<u>jacob.struble@uconn.edu</u>)

Time and Location of TA's office hours:

Tuesdays 7-8 pm – EII 212 & Thursdays 5-7 pm – EII 325

ABET Objectives

In this course, student progress towards the following ABET Engineering Objectives will be assessed:

(a) An ability to apply knowledge of math, science and engineering in the general field of chemical engineering

- (e) An ability to identify, formulate and solve chemical engineering problems
- (g) An ability to communicate effectively
- (j) A knowledge of contemporary issues

Student Outcomes

By the end of CHEG 2111, students will be able to:

1) Calculate physical properties (P, V, T, C_p , C_v , etc) of a system or energy (work and heat) of a process. (ABET a, e, j)

2) Demonstrate the knowledge of the first law of thermodynamic, state functions, equilibrium, four energies and phase behaviors through application of fundamental equations. (ABET a, e)

3) Show an understanding of the second law of thermodynamics, entropy, ideal work through the calculation of processes in close or flow systems (ABET a, e, j)

4) Estimate residual properties through applications of virial coefficient, EOS, generalized correlation. (ABET e, k)

5) Understand the function of thermodynamic components (engine, boiler, compressor, pump...) and calculate their energy (output or consumption) and efficiency of the processes (steam plane, refrigerator, liquefaction) (ABET e, j)

6) Present oral and written final report classic thermodynamic papers as a team to demonstrate their understandings about fundamental thermodynamics (ABET g)

Grading

During the semester, students will be challenged in five areas that are designed to help them to achieve proficiency in the student outcomes: These five areas include: Homework, Quizzes, Mid Exams and Final Exams. The final course grade will be based on the following percentages:

Standard Grading

Participation:	5%
Homework Assignments:	10%
Quiz #1:	5%
Quiz #2:	5%
Mid Term Exam #1:	15%
Quiz #3:	5%
Quiz #4:	5%
Mid Term Exam #2:	20%
Final Exam:	30 %

Grading Details					
Percentage	Letter Grade				
93-100	А				
90-93	A-				
85-89	B+				
80-84	В				
75-79	B-				
70-74	C+				
60-69	С				
50-59	D				
<49	F				

Homework Assignments (HA)

The best way to understand Thermodynamics is though problems solving. Take the time to work on your Homework. Homework Assignments will be posted on the Husky CT site every <u>Friday</u> <u>before 5:00pm</u>. They will be due at the beginning of the class (*12:20SHARP*) the following <u>Friday</u>. NO late homework will be accepted. Homework Solutions (HS) will be posted on Husky CT on the due Friday of each Homework Assignment <u>before 5:00pm</u>. Grades Homework Assignments can be picked up from the CHEG Main Office. Work turned in must be yours and only yours. You are encouraged to work as groups to gain a clearer understanding of the concepts, but no copying is allowed. Not all the Homework Assignment problems will be graded. Generally, 4-5 problems will be given and 2 (selected by the instructor) will be graded. You need to print clearly and legibly. <u>If what you have written is not understood, you will not receive any credit</u>. Clearly identify all intermediate and final answers by drawing a box around the numerical solution with associated units and representing appropriate significant figures. Answers with missing or incorrect units are <u>wrong</u>. Honors Students will have given a project mid semester, and it will be due end of the semester.

Quizzes

Four Quizzes will be given during the class. They will be both 20-30min long. <u>NO open books</u> are allowed. Phones are prohibited!

Mid Term and Final Exams

Two Mid-term Exam and a Final Exam will be given during class time. During the Mid Term Exams you are allowed to have 1-page hand written notes ONLY with equations and your calculator. During the Final Exam you are allowed to have 2-pages of hand written notes ONLY with equations and your calculator. <u>NO open books</u> are allowed. Phones are prohibited!

Participation

Participation will be reflected through your answers to multiple-choice questions during each class. An incorrect answer will receive 1 point total. Those who answer correctly will receive 2 points total. Clickers will be used for the answers. All clickers need to be registered; otherwise you will not be graded.

Other Policies

Student Conduct: http://www.dosa.uconn.edu/student_code.html. Students are responsible for adherence to the University of Connecticut student code of conduct. Perhaps the most important policy to pay attention to is the section on Student Academic Misconduct. "Academic misconduct is dishonest or unethical academic behavior that includes, but is not limited, to misrepresenting mastery in an academic area (e.g., cheating), intentionally or knowingly failing to properly credit information, research or ideas to their rightful originators or representing such information, research or ideas as your own (e.g., plagiarism)." Examples of academic misconduct in this class include, but are not limited to: copying solutions from the solutions manual, using solutions from students who have taken this course in previous years, copying your friends' homework, looking at another student's paper during an exam, lying to the professor or TA and incorrectly filling out the student workbook.

Attendance: Attendance and participation is mandatory and will be graded via in-class quizzes and multi-choice questions.

Absences: Make-up of ANY missed exams requires permission from the Dean of Students; see "Academic Regulations." Midterm-exams are treated the same as Final Examinations. Students involved in official University activities that conflict with class time must inform the instructor in writing prior to the anticipated absence and take the initiative to make up missed work in a timely fashion. In addition, students who will miss class for a religious observance must "inform their instructor in writing within the first three weeks of the semester, and prior to the anticipated absence, and should take the initiative to work out with the instructor a schedule for making up missed work."

University of Connecticut Department of Chemical and Biomolecular Engineering CHEG 2111 – Spring 2016 – Prof. Valla

Week		Day	Date	Торіс	Chapters	Read Pages	HA #
1	М		-				
	W	1	20-Jan	Syllabus & Introduction	Chapter 1		
	F	2	22-Jan	Introduction & Problems		1-15	1
2	М	3	25-Jan	First Law of Thermodynamics	Chapter 2	22-31	
	W	4	27-Jan	Reversible Processes and Heat Capacity		31-44	
	F	5	29-Jan	Energy Balance in open Systems		44-54	2
3	М	6	1-Feb	Quizz #1 & Introduction to Virial equations	Chapter 3	64-72	
	W	7	3-Feb	Ideal Gas Releations		73-86	
	F	8	5-Feb	Applications of virial equations & Cubic Equations		87-99	3
4	М	9	8-Feb	Generalized Equations for gases		99-108	
	Т	10	11-Feb	Problems and Generalized Equations for liquids		109-111	
	F	11	12-Feb	Review of Chapter 3		64-111	4
5	М	12	15-Feb	Quizz #2 & Introduction to Heat Effects	Chapter 4	125-132	
	W	13	17-Feb	Latent Heats & Standard Heat of reactions		133-139	
	F	14	19-Feb	Heat of combustion		139-143	5
6	М	15	22-Feb	Problems on Heat Effects		143-150	
	W	16	24-Feb	Review of Chapters 1, 2, 3 and 4		125-150	
	F	17	26-Feb	Mid Term #1: Chapters 1, 2, 3 and 4			6
7	М	18	29-Feb	Second Law of Thermodynamics and Heat Engines	Chapter 5	159-166	
	W	19	2-Mar	Entropy & Entropy for Ideal gases		167-173	
	F	20	4-Mar	Entropy Balances		176-180	7
8	М	21	7-Mar	Ideal and Lost Work		181-190	
	W	22	9-Mar	Review of Chapter 5		159-190	
	F	23	11-Mar	Quizz #3 & Thermodynamic Properties of Fluids	Chapter 6	199-201	8
				Spring Break			
9	М	24	21-Mar	Property Relations		202-215	
	W	25	23-Mar	Residual Properties & Residual Properties by EOS		215-220	
	F	26	25-Mar	Two phase Systems & Thermodynamic Diagrams		220-230	9
10	М	27	28-Mar	Generalized property correlations for gases		230-240	
	W	28	30-Mar	Review of Chapter 6		199-240	
	F	29	1-Apr	Quizz #4 & Applications of Thermodynamic processes	Chapter 7	254-259	10
11	М	30	4-Apr	Duct Flow, Pipes and Nozzles		260-272	
	W	31	6-Apr	Turbines, Compressors and Ejectors		272-280	
	F	32	8-Apr	Review of Chapter 7		254-280	11
12	М	33	11-Apr	Mid Term #2: Chapters 5, 6 and 7	Chapter 8		
	W	34	13-Apr	Production of Power from Heat		296-302	
	F	35	15-Apr	Production of Power from Heat	<u> </u>	302-312	12
13	М	36	18-Apr	Production of Power and Heat		302-312	
	W	37	20-Apr	Review of Chapter 8		296-312	
	F	38	22-Apr	Refrigeration and Liquitaction	Chapter 9		13
14	M	39	25-Apr	Refrigeration and Liquitaction			
	W	40	27-Apr	Review of Chapter 9			
	F	41	29-Apr	Review of Thermo I			
45	MWE	Finale		Final Exams (all chanters)			

Tentative Schedule

Requirements for homework submission

1. Each submission should have a cover page with the following

Full name Homework # CHEG2111 Due date Worked with: list of students (if applicable)

2. Homework that is not stapled will not be graded

3. Start every problem on a new piece of paper. Number your pages.

4. Box in your final answer.

5. Writing out your method will help with partial credit in the event that a math error is made.

6. For problems completed in Excel, select "**show formulas**." Print out and attach Excel spreadsheets, do not submit electronically. If you use Solver, identify constraints and variable cells.

7. Include all units, necessary steps, diagrams (if needed), and be neat.

8. Homework is designed to help understand concepts for quizzes and exams, and future CHEG courses. **There is no benefit to cheating or copying**.

9. If you have questions, come to office hours. We will try to answer emails in a timely manner, but at office hours you can get immediate feedback.